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ABSTRACT

The various wave theories, theoretical breaking criteria
and derived breaking criteria are reviewed for shallow water
waves. To account for the non-linear hydrodynamics present.
in a shallow water wave breaking on a beach with a sloping
bottom, the perturbation technique of Iwagaki and Sakai is
used to derive a second osrder expression for the horizontal
water particle velocity for long waves. The kinematic
breaking criterion is applied to the derived c(2) and u(2)
values to establish breaking. The results indicate that
the ratios of ny /L, and hy/Hy provide reliable breaking
criteria. Each of the parameters is dependent only upon
beach slope and Hy/L,. Theoretically derived values for

hb/Ho compare favorably with field measurements and offer

significant improvement over previous theory. Predicted
breaking depths are less than those present in experimental

data, suggesting extension to higher orders may be warranted.
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I. INTRODUCTION

Attempts at deriving breaking criteria have been made
since Stokes (1847) presented his classical development.
Derivations of the many available water wave theories all
involve the solution of Euler's equations of motion coupled
with the continuity equation for incompressible, inviscid,
irrotational flow subject to certain boundary conditions.
Breaking, or near breaking waves have very steep profiles
in which the wave height is large compared to the relevant
length scale implying the hydrodynamics are highly non-
linear. At the onset of breaking strong vorticity is
introduced at the surface near the crest and the assumption
that the motion is irrotational is no longer valid. The
strong non{inearitiés and induced vorticity make the
analysis of breaking waves ma;hematically very difficult.
This thesis is concerned with finding an incipient breaking
criterion for waves shoaling on a beach before vorticity
is induced but including nondinear effects. The discussion
will be limited to shallow water wave theory.

Solution of the equations of motion has required the
application of physical assumptions associated with various

wave characteristics. Thus, each formulated theory is




limited in its range of applicability to regions where

its underlying assumptions are valid. Shallow water wave
theory may be classified according to the bottom being
horizontal or sloping. This is an important restriction
because field and laboratory measurements of breaking waves
suggest that the bottom slope is an important parameter in
the classification of breaking waves.

The simplést form of solution to the wave problem is
to linearize the equations of motion assuming a horizontal
bottom. Peregrine (1972) has shown that the linearized
equations apply to regions where the ratio H/L and H/h are
both much less than one, where H is wave height, L is wave
length, and h is water depth. Consequently, this solution
is restricted to waves of infintesimal height and not
applicable to steep breaking waves.

Stokes (1847) was the first investigator to present a
higher order solution applicable to finite amplitude waves,
though limited to a horizontal bottom. In his development,
he transforms the basic equations to an equivalent set by
using a velocity potential, ¢ . The solution is obtained
by expanding the velocity potential using a perturbation
scheme which employs H/L as a perturbation parameter. To
the lowest order, Stokes' method results in linear theory.

The accuracy of Stokes' solution at a particular order

13
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decreases as the ratio h/L decreases. Dean and Eagleson
(1966) attribute this inaccuracy to increasing bottom
influences and a decrease in the importance of vertical
particle acceleration. De (1955) concluded that Stokian
theory should be discarded for values of h/L of 0.125
and less. Dean (1968) expanded a stream function using
a numerical perturbation scheme and was able to raise a
"Stokes'" type wave to any desired order. In this manner
he was able to solve for incipient breaking.

When the relative depth is very small, as in very shal-
low water, the vertical acceleration can be neglected and
the fluid path curvature is small. Hence, the pressure
is assumed to be hydrostatic as the vertical component
of motion does not influence the pressure distribution.

The resulting equations are referred to as the 'long wave
equations.'" A sloping bottom and finite amplitude are
allowed by the long wave equations.

Freidrichs (1948) was able to derive the long wave
equations by a rigorous mathematical approach. Utilizing
quantities h and L which represent typical depth and length
scales, the Airy equations were non-dimensionalized. This
procedure resulted in a large stretching of the horizontal
coordinate relative to the depth coordinate. A perturbation

analysis was then applied with the perturbation parameter

14




o = hz/Lz. He found that to the lowest order the pressure
was indeed hydrostatic and that the long wave equations
resulted.

A third length scale for shallow water theory, which

utilizes the wave amplitude a, is the Ursell parameter
3

Y
o [}

Ursell (1953) showed that long wave theory belongs to the

regime

> S |

(i ['Y
N [

Boussinesq (1872) assumed that the pressure was no
longer hydrostatic, which allows inclusion of vertical water
particle velocities, but results in a limitation on the

wave height. The Boussinesq equations apply when

3
~ 1

o
o e

implying the waves are not as high and the water is
relatively deeper than for long wave theory.

Korteweg and de Vries (1895) simplified the Boussinesq
equation by considering waves which travel only in one
direction over a horizontal bottom. Extending Boussinesq's
equation in this manner they produced a wave theory they
termed ''cnoidal." The limiting case of cnoidal theory is

the solitary wave. The cnoidal/solitary theory has received

15




considerable attention by researchers in recent years.
Keller (1948) extended the perturbation analysis employed
by Freidrichs to the first approximation. He found that
to the first order his results were those of Korteweg and
de Vries. Laitone (1960) continued the process further,
obtaining second order approximations to cnoidal/solitary
waves by solving Freidrichs’ method to the fourth order.
The assumption of waves traveling only in one direction
precludes a reflected wave and imposes the important
restriction of a horizontal or nearly horizontal bottom.

The long wave equations are used in this study because
it is felt that properly including the sloping bottom is
the most important next step in seeking a breaking wave
criterion. The possible importance of vertical accelera-
tions in the wave breaking process are recognized, but
are assumed negligible in order to obtain mathematical
tractability. A second order solution of the long waves
is sought and a breaking criterion derived based on a

kinematic instability condition.

16




IT. THEORETICAL BREAKING CRITERIA

It is desired to formulate breaking criteria which can
be expressed in terms easily observable and measurable.

The several breaking criteria which have been developed
may generally be broken into two categories. First, there
are those which are derived from waves of steady form. The
waves considered are assumed to be in shallow water of
constant depth. Both Stokian and cnoidal/solitary wave
theories have been employed in these investigations. The
second group of derived criteria consists of those con-
cerned with waves which deform as they shoal. Research in
this category of waves has been confined to long wave
theory. The derived criteria for horizontal and sloping
bottoms will be investigated separately.

In order to determine wave parameters which can be used
to predict the breaking of waves, it is necessary to first
formulate some type of limiting value. The physically
significant breaking criteria are the kinematic, dynamic

and geometric criteria.

17
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A. KINEMATIC BREAKING CRITERION

Originally formulated by Rankine (1864), the kinematic
breaking criterion states that the limiting value of the
water particle velocity at the wave crest, u., is the wave

phase velocity, ¢, u.<c. Physically, this is a logical

e =
limitation, for if the particle velocity is allowed to
exceed the wave phase speed, the particle would separate

itself from the wave form.

B. DYNAMIC BREAKING CRITERION
The dynamic breaking criterion is stated by the vertical
momentum flux equation at the surface (z=7)

> .

Dt i Az

The criterion can be formulated in several ways. Assuming
the pressure is a constant at the surface, the maximum

acceleration is

= < g ; P constant

If the water particle acceleration exceeds the gravitational

acceleration, the water particles leave the surface vertically.
A second statement of the dynamic criterion concerns

the vertical pressure gradient. Laitone (1963) proposed

that the limiting vertical pressure gradient beneath the

wave crest is zero. In his study of cnoidal and solitary

18




waves he determined a value for H/h beyond which the

pressure gradient reverses its sign and the pressure begins

to decrease with depth. He concludes that this is physically
impossible and thus accepts zero as the limiting pressure

gradient value.

C. GEOMETRIC BREAKING CRITERION

As a wave progresses into shallow water, the surface
slope steepens. The geometric breaking criterion places
a limiting value of infinity (vertical face) on the slope
of the water surface. Beyond this value, the wave becomes
unstable and the water particles fall forward ahead of the
wave, Stoker (1957) shows that a vertical slope can be
obtained. An insight into the concept can be obtained by
considering the speed of the shallow water wave disturbance

to be given by ¢ = [g(n_+h)]%. Since the crest of the

wave has a greater depth of water beneath it than the
trough in front of it, it tends to ''catch-up' with the
trough. Hence, the forward face continues to steepen as
the wave shoals until it is vertical.

A review of the application of the three breaking 1
criterion to the separate categories of waves of permanent ]

form and shoaling waves follows.




III. DERIVED BREAKING CRITERIA ?

A. BREAKING WAVES OF PERMANENT FORM (SHALLOW WATER,
CONSTANT DEPTH)

The theoretical kinematic and dynamic breaking criteria

have been applied to waves of permanent form. The former

has resulted in a number of derived criteria while the
latter has only been applied to cnoidal/solitary theory to
produce single breaking parameters.

1. Kinematic Breaking Criterion

a. Crest Angle
By applying the kinematic breaking criterion
to his formulated wave theory, Stokes (1880) produced the
first derived breaking criteria. He showed that when the

enclosed crest angle, Figure 2, reached % r radians,

(1200), breaking would occur. To arrive at this conclusion
Stokes was forced to make two assumptions: 1) that the
crest would be formed by two intersecting straight lines
tangent to the real water surface curvature, and 2) that
the velocity potential, transformed to polar coordinates,

could be approximated by

o 4 " <

¢(r,0) = BN sin (N8),
where B and N are to be evaluated and r and # are polar

coordinates.

20




120°

ENCLOSED CREST ANGLE FOR KINEMATICALLY LIMITED WAVE

Figure 2
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Several investigators have verified Stokes'
criteria (Gaughan, Komar and Nath, 1973), however the range
of depths over which Stokian theory can be applied places
limitations on this criteria. Therefore, a contribution made
by Chappelear (1959) in which he was able to develop a method
of satisfying the kinematic breaking criterion for all depths
is of particular importance. Chappelear also verified
Stokes' value for the limiting crest angle.

b. Wave Steepness

Another breaking criteria which has gained
acceptance is that of wave steepness in which it is stated
that the wave height is limited to one-seventh of the wave
length. Several researchers, including Michell (1893),
Havelock (1918), Davies (1952), Yamada (1957) and Chappelear
(1959), have produced results close to this figure. Their
values for maximum wave steepness vary from 0.1412 to 0.1443.
All of their derivations closely followed classical lines.
Dean (1968) used a numerical stream function approach to
examine breaking wave criteria. He found a solution to
the full nonlinear wave formulation that is exact except
for the dynamic free surface boundary conditions. The
solution is found by fitting the dynamic free surface
boundary conditions numerically using an iterative scheme.

Taking the limiting horizontal particle velocity as 98.5%

22




of the wave phase velocity, the resulting maximum wave

steepness value was 0.1723, which differs from those
previously given by about 20%.

c. Wave Height to Depth Ratio

The kinematic breaking criterion has been used

by many investigators to obtain limiting values for the
wave height to depth ratio, H/h. The results, however,
have not been at all consistent and vary widely with
different wave theories. Chappelear (1959) analyzed
Stokian waves and arrived at a value of 0.87. For solitary
waves, results obtained by Boussinesq (1871), Rayleigh
(1876), McCowan (1894), Gwyther (1900), Packhan (1952),
Davies (1952), Yamada (1957), Lenau (1966) and Yamada,
Kimura and Okabe (1968), vary from 0.73 to 1.03. Dean (1968)
found a value of 1,0 using his numerical stream function
approach. Gaughan, Komar and Nath (1973) express the
opinion that these differences probably arise due to
approximate fits of the complex velocity potential to the
free surface boundary conditions. As will be discussed
in a later section, Laitone (1963) found values of H/h =
0.73 and 0.81 for solitary waves using difterent theoretical 1

breaking criterion.
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2. Dynamic Breaking Criterion

a. Water Particle Acceleration
Various limiting values of water particle
acceleration have been determined. Kinsman (1965) gives the
gravitational acceleration, g, as the limiting value for a
crest angle of 120°. Gaughan, Komar and Nath (1973), how-
ever, show that by using Stokes' wave crest equations and a
crest angle of 1200, the limiting value should be %,
b. Vertical Particle Velocity
Laitone (1963) examined the vertical water

particle velocity for cnoidal and solitary waves. Using

a third order velocity equation for cnoidal waves, he found

80G

that values of H/h greater than , where &, a prop-

erty of the wave, is restricted to %<@%1, produced {
physically impossible velocities. Hence this ratio was

established as the limiting value. As the value of @

approaches the limit of 1.0 the cnoidal wave approaches a

solitary wave form. Therefore, the limiting value for a

solitary wave to the third order is H/h = %% = 0.7272.

Laitone carried his solution for the solitary wave to the

next higher order and found a value of H/h = ~f3 - 1 =

0.7321. These two results compare favorably,

24




c. Vertical Pressure Gradient
Laitone (1963) developed a different limiting

value for H/h than that previously discussed when he applied
the vertical pressure gradient criterion. In this case he
found that for H/h = (2 @/3)%, 5<@ <1, the pressure
gradient is zero for cnoidal waves. This expression was
derived to the third order. If the ratio H/h increased
from this value, the sign of the gradient would reverse, a
condition that he concluded could not exist. In the limit-
ing case of @ = 1.0, which gives a solitary wave, the

limiting value of H/h = 0.812 is obtained. This differs

significantly from his previous limit of 0.7272,

B. WAVES WHICH DEFORM AS THEY SHOAL (SLOPING BOTTOM)
As a wave shoals over a sloping bottom, the wave height
and profile are altered. The theory of long waves has been

most generally applied to research in this region. The

derived breaking criteria have been formulated through the
use of the kinematic and geometric breaking criteria.
1. Kinematic Breaking Criterion
The first attempt at applying the kinematic breaking

criterion to a deforming wave was made by Ayyar (1970). His

derivation made use of the concept of a wave front. Simply

stated, a wave front is the position where a discontinuity

25




in the surface slope occurs. The slope of the surface
will be zero in front of the wave front and negative behind
it. Ayyar's approach was to obtain the slope at the wave
front, integrate to find the free surface 7 , and then
apply the kinematic breaking criterion. Assuming the
geometry of the plunging breaker, he then derived the
value of yb/hb = 2.0, where y,, = height of breaker crest
above the bottom and hy = depth at breaking point below
the still water level.

Several problems exist in Ayyar's derived criterion.
First, the derivation is based on the geometry of a plunging
breaker and thus excludes the other categories of breaking
waves. Additionally, his formulation assumes that breaking
will occur at the wave front. Gaughan, Komar and Nath
(1973) point out that this may not be a valid assumption.

2. Geometric Breaking Criterion

Use of the geometric criterion has been made by
several researchers in developing long wave breaking
criteria. Stoker (1957) showed that long waves could
obtain a surface slope of infinity. He extended his work
and used a numerical methods technique to arrive at a
solution to the problem. The method, however, is not
satisfying in that it requires a number of approximations

to be made and requires recalculation as the initial

26




conditions are altered. Further discussion of this pro-

cedure will be presented in a subsequent section. Burger
(1967) and Greenspan (1958) used the wave front concept
and the vertical slope criterion to predict the horizontal
distance traveled from the wave front at time t=0 to the

point of breaking. The result was

o = DL (1-&)4/3
b M S+M

where, M = slope of the beach, h(x) = h{-Mx, h; = initial
water depth, and S = initial surface slope at the wave
front. Gaughan, Komar and Nath (1973) discuss several
limitations to this result. As was the case in Ayyar's
work, the breaking is assumed to occur at the wave front.
The surface slope behind the front is not examined. Some
other point, such as the wave crest, may become vertical
prior to this condition occurring at the wave front. Also,
the use of horizontal distance to breaking is not a useful
criteria. It is not easily measurable, having a somewhat
arbitrary origin. Prediction of the wave height at breaking
is a much more useful parameter.

Another approach involving the vertical surface
slope was taken by Mei (1966). The basis for his work was
originally proposed by Carrier and Greenspan (1959). The

technique is to produce a set of characteristic equations

27




from the long wave equations and then to make an additional
transformation through the use of a final pair of inde-
pendent variables, ¢ and A . The equations are reduced
to a single linear equation which involves a velocity
potential, ®<d‘, >\> ’

(Gcb)q." T,5=0
Mei solves this equation to the first order. He then
follows a procedure used by Carrier and Greenspan whereby
the Jacobian J = 3(x,t)/ 3(o, ) is investigated. This
Jacobian will vanish at points for which the surface slope
is infinite. Mei was able to obtain an expression for

hy H, which was dependent upon H,, L, and the bottom slope.

o
The subscript , denotrs deep water conditions. Unfortunately,
Mei found that his cheory compared poorly with experimental
data. Predicted breaking depths were too large, dependence
on the beach slope was too great and the wave profiles were

too sinusoidal. Mei suggests that these discrepancies

could possibly be eliminated by extending the solution to

a higher order.




IV. REVIEW OF LONG WAVE SOLUTIONS

Essentially two approaches exist which can be used to
solve the nonlinear long wave equations. The first pro-
cedure, initially formulated by Stoker (1947), makes use
of a solution technique known as the method of character-
istics. A final solution utilizing this method can be
made either through numerical calculation or by an analyt-
ical approach. Iwagaki and Sakai (1972) propose a second
solution procedure which involves a perturbation expansion.

An evaluation of each of these techniques follows.

A. METHOD OF CHARACTERISTICS

The application of the method of characteristics to the
long wave equations was explained by Stoker (1958). Neces-
sary to this development is the acceptance of the wave
phase speed relation ¢ = [g(7z+h)]%. The validity of this
equation is discussed in a subsequent section. From this

expression it is seen that

ext (gn,r ghye)/2c W

and

€+ 97 fee. (2)

29




The long wave equations are

Up+uw,==qn, (3)
and

Cu(reh)ly=-7, . (4)
Substitution of (1) and (2) into these equations yields

“t*wx*‘zccx‘g“fo (3a)

and

2c,t2uc, +vcuy, =0 (4a)

Relations (5) and (6) result from the respective addition

and subtraction of (3a) and (4a),
{a/at +(u+6)3/bx}'(u+2c—ghxf)=O (5)

{3/t +(u—c)3/ax3-(u-2c-3}'\x‘t): O. (s

The interpretation of (5) and (6) is essential to the
development. (5) implies that the function (ut2c-gh t)
remains constant for a particle moving with a velocity of
utc. A similar evaluation of (6) can be made. In other
words, two characteristic curves, Cy and Cy, are defined

such that
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C,: dx/dt= u+c
and (7)
Cp: dx/dt=u-c
where

U-*Zc-ahx‘t= K_L= A CONSTANT ALONG C_L
and (8)
U-2¢- 9 Hx‘t= K?_: A CoNsTANT ALong Cp

The system of equations given by (7) and (8) is equivalent
to that defined by (3a) and (4a), hence, a solution of either
set provides a solution for the other.

It now becomes necessary to determine the character-
istics so that a solution may be obtained. Stoker's
technique was to make use of a method of successive approxi-
mations. He assumed that the initial values of u and 7
could be observed. Use of c = Cg(fz+h)]% could then pro-
vide the phase speed at time t=0. These initial conditions

are assigned values such that for t=0

u.(x,o)= a(x)
c(x,0) = E(X)

The task is to approximate u and c¢ for small increments of

(9)

time. Figure 3 clarifies the discussion.
A series of points along the x-axis, which are separated
by a small distance 8, are considered. Since the values

of u and ¢ are known for each of these points from (9), the

slope of the characteristics C; and C2 at each point can
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INTEGRATION BY FINITE DIFFERENCES

Figure 3




also be obtained through the use of (7). These slopes are

used to construct straight line segments from the points

along the x-axis. Location of points 5, 6 and 7 is deter-
mined by the intersection of these line segments. A source |
of error is inherent in the use of straight line segments

to approximate the characteristic curves. This error is

restricted to a minimum by using sufficiently small values

of For this case, the tangents to the curves provided

%
by the slopes give good approximations to small segments
of the curves. Equations (8) and (9) give the character-

istics issuing from points on the x-axis as

along Cq : u+26—3"1x't=a+2'5
(10)

along C, : u—ac—ghxfza—az
The values of x and t can be obtained for the points 5, 6
and 7 (this could be accomplished graphically, for instance).
Equation (10) can then be used to determine the values of
u and c¢ at these points. The procedure can be continued to
obtain values for u and c at the subsequent points 8, 9 and
10. In this manner, a net of points at which values of u
and ¢ are approximated could be constructed which covered

an entire field of concern. Values at intermediate points

could be found by interpolation. Stoker states that as




6x-0, the process will converge to an unique solution
of (7) and (8).

Numerous objections have been raised against this
particular numerical approach. Ayyar (1970) categorizes
these into three areas. First, the solution is not explicit
and requires re-calculation for a change in initial condi-
tions. This alone makes the procedure difficult to use
effectively. A second criticism is that a spilling type
breaker is always predicted; thus the elimination of the
several other breaker types places a severe restrictidn on
the method. Finally, LeMéhauté (1968) has given evidence
that the technique produces incorrect predictions of breaker
points.

An alternative and more analytical solution to equations
(7) and (8) has been offered by Carrier and Greenspan (1958)
and was discussed in Section III.B.2. Two independent
variables ¢ and X are used to transform the equations.
Defining a veiocity potential ¢ (¢ ,A) yields the linear

second order equation
(4%36-(@“: o, (11)

to which the authors propose a solution,

o(s,x)= AJ_(we) cos(wr-v) (12)
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where A = constant to be determined and ¢ = a phase lag.

At this point, Carrier and Greenspan made use of the verti-
cal surface slope criterion and determined values of a
Jacobian, J = 93 (x,t)/ 3 (g ,A), which would exist for the
specific case of non-breaking waves. Consequently, the
remainder of théir study is of little value to our discussion.

Mei (1966) considered the solution technique of Carrier
and Greenspan as it applied to the case of breaking waves.

He selects

= —BEJO (o’/ai'/‘-) cos()\/ZiV2+’W/4-)
+ N, (o'/zi'/"> s|~(>\/ai"‘*+'rr/+)] (13)

whete B = a constant to be determined, ( = slope of the
beach, JO = zero-order Bessel function, and N, = zero-order
Neumann (Weber) function as his solution. Using this rela-
tion, Mei derived first order equations for u and 71 . The
coefficient B is determined by matching the solution to
that for an outer region where a horizontal bottom Airy
Theory was applied. Mei determined a breaking parameter
by applying the geometric breaking criterion.

Comparison with experimental data indicated that Mei's
results were not accurate. He attributed these deficiencies
to the fact that the solution was not carried to higher

orders. Previous studies conducted by 3enney (1966) had
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suggested higher order derivations were required for shallow

water breaking conditions. Solution to a higher order is
required in both the inner and outer regions if the coeffi-
cient B is to be accurately determined. The procedure of
Tlapa, Mei and Eagleson (1966) provides a perturbation
expansion for the outer region. Review of this method
shows that the third order solution must be considered to
uniquely determine the second order coefficients. Assuming
that a successful solution to the outer region expansion
could be found, or that B can be found independent of the
off-shore regime, difficulties still remain in the near
shore area. This is the location of breaking and thus of
concern. The solution would be vastly simplified if a
method could be found in which only the velocity potential
used by Mei need be perturbated. Unfortunately, the single
equation for the velocity potential prevents this approach.
The quantities ¢ and A are only variables used to trans-
form the characteristic equations and hence perturbations
on them produce no new equations. The only remaining
alternative is to use the next higher order expression of
the Airy equations to form the characteristic equationms.

This implies the consideration of cnoidal theory.




B. IWAGAKI AND SAKAI PERTURBATION TECHNIQUE

Iwagaki and Sakai (1972) proposed a second method of
solution which involved a perturbation expansion of the
long wave equations. The premise of their study was that
the asymmetric profile of shallow water waves and the effect
of the beach slope on wave transformations could be explained
by taking into account the nonlinearity of the long wave
equations. To show this, they developed a second order
solution for 7 from the long wave equations (3) and (4).

In the derivation, the beach slope is represented by i
and the depth, h, is such that h=h(x)=i-x. Iwagaki and

Sakai assume that u and 77 may be expressed as

7Z=°(7?(1)+o(27?(2‘)+,,. (14)

w=ot u®px®,8 ... (15)

where & is a small quantity and the superscripts (1) and
(2) indicate the order of the term. Substitution of (14)
and (15) into the long wave equations, and arranging them

with respect to o and cxz yields the four equations,
(n 7 -
= 16
Uy +9 7 x (@) (16)

7(:’+[ua))1]x=0 (17)

u.(:)-r- u® u(;\-f- 3;7(:\ =0 (18)
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2\*'[ (D?Z 4 u(ﬂ ,_,] (19)

Equations (16) and (17) together give two equations in two

unknowns which can be solved to obtain first order expression

for 7 and u of the form

(‘L)(x t)“al__c;oso’t J (ZG‘V g& )
= it (am/ =) ] o

and
LO(x ) =aVV X Z st ), (20 VET )
+cos ¢ T- N (Z«F}J (21)

where Jr( ) and Nr( ) represent Bessel and Neumann (Weber)
functions respectively and a is a constant related to the
wave height. Equations (20) and (21) can be substituted
into (18) and (19), reducing the problem to solution of
(18) and (19) for second order expressions for u and 77 .
The authors presented a solution for 71(2) in which they
approximated the Bessel and Neumann functions in the first
order solutions with trigonometric functions. They show

2

that for values of x greater than gi/4 ¢ “ these substitutions

are valid. The derived formula for 7z(2)(x t) is

("')(xﬂ /I X "cos 52(«’@*2«(3 \) )
%%‘+—Th~ gﬁL
ST () e s{z(w(%a b2

ma,?x slN{a(z«(gfj —.m)gj. (22)
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Iwagaki and Sakai presented experimental results which

confirmed that their solution technique produced valid

results for the wave form.

C. PHASE SPEED RELATION

In several of the previous sections mention has been
made of the phase speed relation, ¢ = [g(7(+h5]%. Although
this equation is widely used in the literature on wave
theories and is generally accepted; few discussions have
been presented which establish its validity. The question
deserves some attention prior to application of the “inematic
breaking criterion.

The first inclination toward the use of the relation
comes from the linearized long wave equations for water of
constant depth. Stoker (1958) showed that for these
conditions u satisfies the relation ’

B E;F; (A =0.
77 can be shown to satisfy the same equation. The implica-
tion of this expression is that the speed of the wave dis-
turbance is given by c = (gh)%.

Another indication that the expression may indeed be
valid comes from what Stoker terms the gas dynamics analogy.
Stoker credits the development of this idea to Riabouchinsky

(1932). Consideration is made of a mass per unit area |




e e |

expressed by
g = e(rgﬂw) (23)
where i density of water. Thus

Ce™ £ > ko)

The force F per unit width is defined as

P = S: pdz . (25)

By using the hydrostatic pressure relation, 55 may be

reduced to

F=gee (n+h) = 2o B%. oo
Multiplying both sides of equation (3) by g(n+h) gives
o (p+ k) (u ruuy)= -9 2 (p+ h) 7y (27)
which may be re-expressed, using (23) and (26), as
E(ut+uux)=—ﬁx+g€’7x- (28)
Equations (23) and (24) can be used to re-write (4) as
B, = =8, (29)

Equations (26), (28) and (29), when combined, give results

similar to those of gas dynamics for one dimensional flow,
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the only difference being the presence of the term g‘é h,

in (28). For the case of constant depth, this term
vanishes. In gas dynamics, the sound speed is given by
c =[d%€]'/f Applying this with $/23) and (26), '
= I =
¢ =L %] /?';'- (%_Lé =L g(n+h)] e

Although these discussions provide an insight into
using the phase speed relation, they can hardly be consid-
ered as a definitive argument. A satisfactory derivation
can be obtained by returning to the methods of character-
istics. The review of this technique explained that the
phase speed was assumed to be given by c = Eg(7(+hi]%.
The theory could have been derived equally as easily by
simply defining a quantity c = [g(:?+h)_]%. No physical
significance need be immediately applied to c. This being
the case, an identical development can be made resulting
in the same characteristic equations. The task then becomes
to discover the physical meaning of c.

Stoker (1958) presents the following argument. It is
assumed that the initial values of u and 7»7 are given for
a body of water which is in motion. The value of c¢ for
this instant is given through c = [g(7z+hi]%. Figure &4
will aid in the explanation. Consider a disturbance created
over the segment of the x-axis Ql Q2- How will this effect

the solution? Each point Q on the x-axis has what is termed

41




[ %]

Figure 4
42

PROPAGATION OF DISTURBANCES

A PRI I S i




- e |

as a range of influence. This is the region of the x,t

E plane in which the values of u and ¢ are influenced by

| the initial conditions at Q. This area is defined by the
characteristics issuing from Q. Consequently, for the
particular case under consideration, the segment Q1 Q2
will have an influence on u and c¢ for the shaded region in
Figure 4. The two curves are given by Cl:dx/dt o -

and Cz:dx/dt =u - c¢c. u is defined as the horizontal

velocity of the moving fluid. The speed of the disturbance
as it moves through the flowing water must therefore be.
given by c. Thus, the validity of the phase speed relation
seems apparent.

One final argument can be formulated by the use of the
method of characteristics. Although he does not discuss this
aspect of his study, Greenspan (1958) outlines this proof.
Again, consider the method of characteristics to be formed
using a term c defined as c= [g(7?+h)]%. A wave which is
progressing into quiescent water is considered. Of concern

is the forward moving characteristic curve, %5 =u+c,

E
which contains the wave front. Since the water immediately
preceding the wave front is quiescent, the value of u must
be zero at the front. The characteristic, and consequently

the wave front, must be progressing with speed c. Hence,

the phase speed is given by ¢ =[g(7 +h)3%.
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V. DERIVATION OF WAVE-INDUCED VELOCITY AND
WAVE PHASE SPEED USING IWAGAKI AND SAKAI

PERTURBATION TECHNIQUE

A. DERIVATION OF u(?

The second order wave induced velocity u(?) g derived
using the perturbation technique used by Iwagaki and Sakai
to derive a second order surface profile. All terms used
are defined in the list of symbols. The initial equations

employed are (18) and (19),

@ o) (1) (2
U-,t + w U-x + < 7? X =
77t s X

These equations result when u and 7l are given as power
series expansions of a small quantity <« and these expres-
sions substituted into the long wave equations. Eliminating
762) from (18) and (19), substituting h = i*x and grouping
terms of u(2) yields
(2) : @) . BT
u._t_t-ca{(x L.Lxx-f-Ztux 2—

3{?' w0 (3 () (;) (1)

(WS

x 7 7/>< x

=Y ) 3 (30)
t X xt

Using the first order term for u given by Iwagaki and Sakai

and differentiating with respect to x gives
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“(;J (X)Q e (%_)sz-% ?sw“’t"h [P("ﬂ
+cosate. NL[P(X)] E
a<T

+ T% { sine T (‘jo[FG‘ﬂ & ?é?) JL[F()Q])
+ c.o.so’—t'(Na[P(xﬂ'F,&—) NL[F(XQ)} (31)
Vo
where ( \) = .. !
P 3 i ( 3\\
Similarly, differentiating (31) with respect to x provides

an expression for u)(u];) >

u():; (x,t}= a (%)‘/L e gs‘Nrt'J.L’[P(X\]
+coscot- N_L[FGA ]

2.0

-« E { sing Tt -(Jo [F(x\]—é%;) “)‘[P(xﬂ
+ cos et {W6] -5 M

. %%ZSVL X—J/z ?sm\'r't‘ J,[P(X)]
+eosst N [p()]3. 2

An equation for u}({i) can be obtained from (31) by

differentiating with respect to t,

8, 97 - ag T et Ao
Xt FA i SINTté N.L [P<XEP]X§]

2
a I

+ T‘T g CosY T"(JOEP(\A]-F—’%@ JJ[F(X)]

o S‘NVt(NoE?(*ﬂ—p’h)Nl[\’&ﬂR . (3%
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When u(l) is differentiated with respect to t we obtain
VZ ik
uf? (x)'{:)= @ (‘%") Ztr e g cosr’t-Jl[ P(x\)]
- SINTT'NJ_[P(XXJE g (34)

Similarly, differentiating 7((1)(x,t:) yields a set of

equations,

7 Beays v /(cyvz "’é et | oy ]
—~ SinT Lo Nl[[:(xﬂ% (35)

and

;n(xlf)_ /2- Y Cosva[(xﬂ
7xx -swv“t?N [POQ ]}

- 55 Leos vt (0, [p (T )]
- s;wv't-(Nc,l.P(x\)]"P(‘T) N*[P(“ﬂ)g.(36)

Equations (31) through (36) can be used to find

expressions for the individual terms on the right hand side
of (30). When these expressions are combined, the right

side of (30) is evaluated as

cos 2et {arg ()" x-72 (U, [o6IN[p 6]
+J[F(xﬂN [l ) |

+ ofqe X ® (_na_ J, o] NJP(xﬂ




— Jo [P(X)] No [P(x)])
-3ae™ () 57 (4 p6I N [p 4]
| + LLpWIN 1)

L, + 520t a& ( _3( >'/z.x.5é( JO[P(xﬂJ‘L[P(xﬂ

| 5 : = NLp O IN [p (0]

| 0;7'_3_0:_ -2.<_'L ')7—[ T

+=F 5 (7 ) [p6]-d, [peo]
+N£-[p(x)] "‘z‘,‘ Ni‘_[ﬂx)])}

Vp
=+ cf'a (’%‘\ X‘Vzg‘_\o[}(fﬂ N.L(:? (Xﬂ —JJ-[F&S] NO[F(YQ§ K 37)

The asymptotic expansions of the Bessel and Neumann (Weber)

functions are

J, (w)“%\)ﬁcos (w- - % “%>
(38)

and [
~ [Z /Z. o _ )
Nr(w\) ("rr/w) Sr~(w-r/2_ /},
’
‘ the approximations being valid for values of w such that
-
i :w’ £ 1.0,

Substitution of (38) into (37) gives as a final expres-

sion for the right side of (30),

e

W_)  @_w W _w\_ () ww_
3(Zux7?x+u.")r(‘xx+uxx77 ) ut UL e

cos 2ot i %‘;ﬁ " cos[2 ?(x)]
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IS’A ’n’ (“?‘)V 5:~[2¢(X)]
‘g__a__ %3 coS[Z?(x)]}

mwa

+.sw20’t{—’—a":< Sm[é?(xﬂ 15'_9_( ) cos(Zf@]
31-—3—x 5»4[297(;&)

__L X (39)
where ?(@ Zq (g LB Aj

The solution of u(z) is assumed to be of the form

u(a)(x,t)-'-A(x} coslal+ B(x)5m 2ct +C(x\ . (40)

Use of this expression yields equations for the individual

terms on the left side of (30),

uf(x,t>=A/(X)cosld‘t-r B/(x) sSINZeT + C/(KXJ (41)
(Z\(xﬂ A (X\CosZG*-r B ()smacr”c +C (x) (42)

WP (4D = 20 {B(:) cos 20t = A sim 2wtf | @

)

(7‘3 (x 't> -4q {A cosZcft + B(x)smlﬁt‘j) (44)

Combination of (41) through (44) can be used to provide an

expression for the left side of (30),
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taftl - a (( X **251;'* ral Lfi? >

cos2at {— 402'A(x)'3ix A”(x\\-Z 9 i A'Mf

+5m2¢t§_ Aq B(x} quB/,(x) 2 (B (x)%
{ ;)*XC(X)*ZQLC (x)$ . (45)

Comparison of (39) and (45) allows a determination of
A(x), B(x) and C(x) to be made. This is accomplished for
A(x) and B(x) by equating the respective coefficients of
the sine and cosine terms in the two equations while C(x)
is found by equating the terms independent of time. This

procedure gives
5, = i'/z ~3/2
A(x) %_(> x Fsin[2 P(x)]
+ s __a—x cos{ap(x)]) (46)

o /9\% _
09 S W cnlz (9]
- Y5 23, £ Pz ry(xﬂ (47)

r~T
and
a? -
c(x)= —?3—9;—1 ¥ (48)

Substitution of (46), (47) and (48) into the left side

of (30) yields




ma
+_ 2.2 1
ol B (49)
Y qg

Similar to the development of Iwagaki and Sakai for
71(2)’ the coefficients A(x), B(x) and C(x) which have been
deduced do not yield an exact solution of (30). Comparison
of (39) and (49) shows that discrepancies exist in the third
term coefficients of cos 20t and sin 2¢t (i.e., 6/5 versus

1.0). The three terms which comprise the coefficients of
3

cos 2¢t and sin 2¢ t involve x-z, x-s/2 and x . Use of
- g_g; and h = i'x enables the ratio of the third term
to the first term to be evaluated as
Taqtl
3rd term/lst term ~ aw(ah)"‘- N (50)

It is noted that the first and third term coefficients are
in phase. For the case of i = 1/10, h = 25 cm and T = 3
seconds, (50) indicates that the ratio of the third term

to the first is equal to 0.089. Hence, the difference
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between the coefficients created by the use of (46), (47)
and (48) is negligible and (40) may therefore be evaluated

as

“(z)( )= cos Zo’ts—?'_" ( 2. —3/ZS,N[Z )
x¢) 2y (ﬂ’ COZ@.? ] Pl

+S|N20't{i;_(_< YL JZ‘COS[Z?(K)]
—3/5_5___ = Zgw[?,?(x)]

S
* -2
* e K £50)

Equation (51) can be simplified to

L x1)= ‘;%7; (%Y? Y, c.°5§ 2{ctrze (_JEL_YZ i

’W/Z + —t¢N_L[ S -?0-;—& '/z.]} (52)

In order to make this simplification, it is necessary to

assume that
( I
LYo - +1]* =10 (53)

The applicable range of solution for this perturbation
scheme, which is discussed in Section V.C., restricts the
computations to regions where 2<r(—gl<i—-)Js 2 1.0. If the
lower limit of this relation, i.e. 2<r(g—’;—);2' =1.0, is
substituted into the left side of (53), a numerical result

of 1.166 is obtained. This error appears to be rather

51




significant. Utilizing a limit of 2¢ (ii-)}faa.o, the left
24

side of (53) is evaluated as 1.044. Consequently, the use

of this ratio as a limit on the range of applicability of

the solution may seem appropriate. Further discussion of

this parameter is presented in Section V.C.

B. SECOND ORDER EQUATIONS FOR 7? AND u
Originally, it was assumed that 77 and u could be
expressed as
w 2
G
and : (2)
2 4
=t eyt ® ¥y . -

I

It is therefore necessary to combine the expressions for

7,((1)

final relations. It is noted that for 7z(x,t), Iwagaki

and 27(2) and for u(l) and u(z) to determine the

and Sakai neglected the second part of (22) which is inde-
pendent of t. They felt justified in so doing since these
terms effect only the stillwater depth. Their study was
concern~d with wave heights and profiles and consequently
the stillwater depth was not required. This simplification
is not valid for the present study since the phase speed,
given by ¢ = [g(7(+hj]%, is effected by the stillwater
depth. Furthermore, the ratio of the coefficients of the

first term independent of t to the first term on the right
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side of (22) is [%'_ (_}51._)% i]l. Utilizing the upper
limit for T (5)55 of 4t /i given by Iwagaki and Sakai, the
importance of including these terms is apparent. (The upper
limit of T (ﬁ)% is discussed in Section V.C.)

When the first order equations for u and 7 given by
Iwagaki and Sakai, equations (20) and (21), are expressed
using the asymptotic approximations for the Bessel and

Weber functions the following results are obtained,

7°6,8)= o [ﬂk "t cos ot

+ 20 (3 = Tf/z;} (54)

and

uw(x,t) = —a(g/t\)y“ (%y&x'%‘ cos {d‘c
cllel (55)

Equations (22), (52), (54) and (55) can now be used to

arrive at second order expressions for 7 and u,

(x)‘(:):: ~ S Sg%‘;)l/z '/L"/“' at
{ { g +2}J(/){ wﬁ%]

2
—+ O(L[," ( +Xf:os ;(Z E’}";:)Z/zo’( L,/z_ :; 71’] L

+ ﬁ%(%)'/zx.}i cas?z[zq'(ﬁ')/z _11’/4 ]}
‘%Lx sw{ E.cr gk\/l ”]q (56)
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X‘t) 0‘[ 3//4 vﬂ')/&/-/cos ot
e

+ck{ 1n -3z coS[Z.SO't+ZO'(§S' /“Z}
/
W/Z. wtan { QLX_\/Lg-I]. (57)

C. DETERMINATION OF THE PERTURBATION PARAMETER,

The next question which must be addressed is how should
the perturbation parameter, < , be defined. The first step
in this determination, as outlined by Iwagaki and Sakai, is
to formulate a region of applicability for the solution.

In their study, they begin by considering a wave celerity
of ¢ = (gh)%. This is cause for some concern in that it
differs from the accepted expression of c = [g(r(+h)];2.

The problem, however, is to find a region of water where the

theory can be applied; hence, use of an average velocity
for the entire area seems appropriate. Prior to the arrival
of the wave form and after its passage, the surface is at
the stillwater depth and i 0. Therefore, 71 = 0 provides

an average value for 7 over the region and ¢ = (gh)% gives

a representative average speed. In addition, over a large
portion of the region 7 will be small compared to h. Ayyar's

(1972) calculations indicate that even at the extreme point
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of breaking, the phase speed at the crest will only vary
from this value by a factor of (2)%.
Using this value for c, Iwagaki and Sakai derive the

relation

I .
s TOATE

The authors conclude from this that an upper limit on h/L
gives a lower limit for T(g/h)%. They then considered
establishing an upper limit for T(g/h)%. For this purpose
they recalled that the approximations used for the Bessel

and Neumann functions required that

XoNT
ZO'(OAL§ SE o (59)

This in turn, implies that

TIUA) 44 . (60)

Thus, (60) defines the upper limit of T(g/h)%. Figure 5
shows how (58) and (60) are combined to define the region
of applicability for the solution.

Iwagaki and Sakai select as the perturbation parameter

the ratio hl/Lo’ where h., is the largest depth in the

1

applicable range of the solution and Lo is the deep water
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wave length given by L= gTZ/ZTr. Use of this ratio may
at first seem rather arbitrary. The motivation for this
choice becomes more apparent when the derivation of the
long wave equations by Freidrichs is recalled. His per-
turbation parameter involved a representative length and
depth quantity for the wave. Consequently, a similar ratio
seems logical when considering the small value of o( .

The ease with which this ratio may be evaluated pro-
vides an additional incentive for its selection; examina-
tion of the range of applicability of the solution is all
that is required to obtain its value. An additional
comment about this region is required. The upper limit
to be placed upon h/L has not been previously discussed.
In fact, two values for this parameter are shown in Figure
5. For their numerical calculations, Iwagaki and Sakai
use h/L £1/20. The selection was arbitrary but conforms
to general usage in wave theory. The theory was developed
for shallow water where the pressure is hydrostatic;
for this region, h/L £ 1/20 provides a reasonable limit.

When this value is assumed, (58) requires that

T (3/*")'/1 220. (61)
Applying L= 3"'%« to (61),
k. /L, = 0.0157. (62)
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Equation (62) will be adopted for the value of o throughout
the majority of this presentation.

Iwagaki and Sakai discuss the fact that use of (62)
restricts the discussion to waves for which HO/LO < 0.006.
For greater HO/L0 values, the theoretical energy flux curves
predict that the deep water waves will break prior to
arriving at the point where hl/L0 = 0.0157. 1In order to
extend the theory to situations where HO/Lo exceeds 0.006,
it is necessary to increase the upper limit placed upon h/L.
Several cases for which h/L £1/15 are investigated in this
study to determine the applicability of the theory to a
domain of HO/Lo values greater than 0.006.

A final comment may now be made concerning the approxima-
tion of (53). Use of (59) evaluates (60) as 1.16, not the
assumed value 1.0. However, when these values are multiplied
by the quantity 0(2, as is required by (56) and (57), the
difference becomes negligibly small. Hence the detgrmina-
tion by Iwagaki and Sakai for the limit 20’0;%—)% 2 1.0

seems appropriate.

D. SECOND ORDER EXPRESSION FOR c
A second order expression for the phase speed c¢ can be
found by substituting (56) into the phase speed relation,

c = [g(n+h)] ¥, giving
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[ [ 3@,«;;_ ‘V4cos{0"t+ Zo'(f(—y/a
"'"/4%]

dl[ os32|ct a.o'('"\)L-——-J
i t;/;{+[‘-tn+[/ 30/& Vz]%

+ ﬁ_:%_ X Cgsgz_[zq y/z_ﬂr]g

"____§__ x SIN{ZEZG’(EXT\I/L_%.Yi]

T4
+ 3¢><] ; (63)

The negative square root is utilized due to the fact that

the wave is progressing in the negative x-direction.

E. DETERMINATION OF a

Prior to applying the kinematic breaking criterion to
the preceding equations, the value of the term a in (56),
(57) and (63) must be determined. This evaluation follows
closely that which was outlined by Iwagaki and Sakai. As
mentioned previously, these authors neglected those terms
in i which were independent of t. Although these terms
are included for the determination of c, they can be elim-
inated for the purpose of establishing the value of a. The
validity of this simplification stems from the fact that

the value of the constant will be evaluated at the point
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where h = hl’ the deepesp depth in the applicable range of

the solution. Examination of the terms independent of time

in (56) shows that they decrease in absolute value for
increasing x; the terms becoming negligibly small at the |
point where h = hl‘ Consequently, for the determination

of a, 7 will be assumed to be expressed by

77()( t\‘o/[-a_i Q"’—} . '/“cosgcrf+z:r( \5'/—34-"%1

Z
+ & [11'( X c_osflrcrt+l<r(i L—I}{-]

+I +ted' (2 (%le 2R e

Substituting « = hl/Lo into (64) yields

7‘?/}1l - A(L)Ccse’+ A(z)CCS (2.61-5) (65) -;

where

L WAL WAL A
Cor o H o Ao
G = (z*vﬁ*)t + 2] (347 /Z(ﬁ-./\/J » (66)

-rnfq

52w+ tan {25 (o) * () H)

TS R
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1) 2
IE Ai and Ai ) are used to denote A(l) and A(z) at

h = h,, then from (66)

1’
b = %/

A=t (WALY (a/mY. (67)

'% '%)

. o =1 , 3 ‘
In addition, at h hl’ tan (TE (2m) 1(h/L°)

becomes negligibly small compared to 4v¥/2 and can therefore
be neglected.
The wave profile at h = hl, represented by f{l, is

now given by,

o /=AY £(0) (68)

where

F(6>_ c.os G -bsiniE,
L?/C&'D ; (69)

At h = hl’ the wave height is assumed to be twice the

amplitude, 4B hence,

, /= 2 AP E(L)

where ©c is evaluated from df/d® = 0. Iwagaki and Sakai

determine ©%c as




G, = arcsin { [ % - (o) '/z]/z ;, (71)

The problem now is to find a value for Hl/hl‘ Use of
the theoretical curves for wave height change, which are
based upon wave energy flux, provides a value for Hl/Ho
when hl/Lo is known. Ho/Lo’ the ratio of the deep water
wave height to the deep water wave length, can be deter-
mined for various wave conditions and then Hl/hl is found

through the identity

W, /hu= (H, /“L)(HO/LO\)/(H_L A . e

Equations (67), (69), (71) and (72) can now be substituted
into (70) to evaluate a. Simple computer techniques, as
discussed in Appendix B, provide a determination of a for

specific values of i, HO/Lo and period T.
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VI. BREAKING CRITERION DERIVED

A. APPLICATION OF KINEMATIC BREAKING CRITERION

The derived horizontal wave induced velocity and wave

phase speed are used to derive a breaking criterion. As
stipulated by the kinematic breaking criterion, breaking
will occur when the horizontal particle velocity equals

the phase speed velocity. Theoretically, this condition
may exist for several points in space and time. Of con-
cern, however, is the specific case for which the horizontal
distance from the beach at which u equals c is maximized.
This will be the first position at which the approaching
wave may break and hence all other cases are purely
imaginary. The numerical solution technique employed is

relatively simple. Subtracting the second order relation

for u, (57), from that for the phase speed c, (63), equating
the resulting expression to zero, and solving for x and t
gives points in space and time at which the kinematic
breaking criterion is satisfied. Examination of this
solution set yields the maximum horizontal distance at
which u equals c. The computer techniques employed are

discussed in Appendix B.
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B. RESULTS

The numerical results obtained are summarized in Table 1.

Several wave conditions are investigated in which the values
for the beach slope, wave period, and deep water wave height
to deep water wave length (HO/LO) are varied. The specific
selection of 0.119298 for the beach slope and 8.6 seconds
for the period was made to conform with a future study
(Hulstrand, 1976) in which experimental data will be used
to verify these theoretical results. All other choices

are strictly arbitrary.

The first result of interest is that of the ratio
71b/L0, where n . is the free surface elevation at the
point of breaking. Table 1 shows that for each combination
of beach slope and HO/Lo in the second order solution, the
ratio is essentially constant (some small variations occur
in the second significant figure). The value of the ratio
is independent of the wave period. The consistency of
the ratio suggests the use of this parameter as a breaking
criteria for specific beach slopeé and HO/Lo conditions.

A second parameter listed in Table 1, that of hb/Ho’
where hb is the depth at breaking referenced to the still-
water level, has often been utilized in the measurement of
breaking waves. The theory under investigation yields

consistent results for this ratio for specific beach slopes
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and HO/L0 combinations. Mei (1966) derived a first order

solution for this parameter of

b = ) Pl

Examination of Figure 6 shows that Mei's calculations do
not compare favorably with experimental data. Mei
attributed this difference to the fact that his solution
was confined to first order theory. Figure 6 shows that
the theory presented here yields a much closer approxima-
tion to the observed experimental data. It is noted that
much of the observed data has been accumulated for values
of H /L, greater than those applicable to the current
calculations. Plots for h/L £ 1/20 and h/L £1/15 have
been extended through the theoretically derived points for
purposes of comparison. Within the concurrent regions of
applicability, the theoretically derived values for the
various limiting values of h/L are similar. This suggests
that the extension of these graphs into the domain of
greater H /L, values provides at least an indication of the
breaking criteria which would be derived by utilizing h/L
ratios applicable for these regions.

The theoretically derived values of hb/Ho decrease
with increasing values of HO/LO. This conforms with the

trend displayed by the field measurements. In contrast,
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Mei's results show an increase in the ratio with increasing
HO/LO.

Of concern is the fact the current theory predicts
breaking depths less than those observed in the experimental
data. Table 1 and Figure 6 include data for the first
order solution resulting from the theory presented. Figure
6 shows that the extension to the second order solution pro-
duces results which compare more favorably to the experi-
mental results. This suggests that higher order solutions
would yield improved results. An additional source of
error present in this study results from the fact that the
vertical water particle accelerations have been neglected.

A final comment can be made concerning Mei's calcula-
tions. The first order solution which is derived from the
procedure utilized in this study yields considerably
improved results over those of Mei. Therefore Mei's
descrepancies cannot be attributed entirely to the restric-
tion to the lowest order solution. The source of error may
possibly be due to the use of the geometrical breaking
criterion.

Figures 7 and 8 depict representative wave profiles at
breaking for the current theory. These indicate that
breaking occurs prior to the attainment of a vertical

surface slope. The figures also show that the predicted
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breaking occurs at the wave crest. Figure 8 shows an
unrealistically deep trough in front of the crest. The
use of the Bessel function approximation has been shown

|
X /g

to be valid for 2 ‘(gi >

1.0 . Substitution into this
relation of the values of the terms used to construct
Figure 8 requires x221.89 feet. It is seen, therefore,
that the excessively deep trough is predicted in a region
where the Bessel function approximation is not valid. The
predicted breaking for the specific instance shown in the
figure is at x = 33.73 feet, which is in the applicable
region for the approximation. For each case investigated,
the predicted breaking point occurred well within the
region where the approximation is accurate; hence the
derived breaking criteria is deemed valid.

Ayyar (1970), utilizing the kinematic breaking criterion,
produced the additional shallow water breaking criterion of
yb/hb=2.0. Table 1 summarizes the values obtained in the
present study for this ratio, all of which are considerably
larger than 2.0. Ayyar's ratio does not account for the
variations associated with HO/Lo suggested by the observed
hy/H, data. In addition, his theory is limited to waves
which have the geometry ¢” a plunging breaker. Ayyar also
assumes that breaking occurs at the wave front, which may

not in fact take place. The limitations placed upon Ayyar's
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formulation and the random values of the ratio displayed

in Table 1 prevents this from being considered a valid
indication of breaking.

The most significant disadvantage associated with the
breaking criteria derived from the theory presented in
this study is that the ratios require re-calculation for
changes in beach slope and deep water wave height to wave
length ratio. This objection is similar to that which
was raised against Stoker's use of the method of charac-
teristics. The complex dependence of the values of a,

u and c upon both the beach slope and Ho/L however,

o’
leaves the investigator with little choice but to resort
to a numerical solution. In defense of the approach, the
solution technique applied to specific situations is
relatively simple and requires minimal computations once
the beach slope and Hc/Lo are known. Selected data points
may be used to construct graphs which approximate the
hb/Ho ratio for each specific beach slope. This can be

used to provide an indication of breaking for varying

Ho/Lo values.




VII. CONCLUSIONS

Two shallow water breaking criteria have been formu-
lated through the application of the kinematic breaking
criterion to a second order solution of the long wave
equations. These are the ratios of 7,/L, and h /Hj.

Both of these criteria are dependent only upon the beach
slope and the ratio of the deep water wave height to the
deep water wave length. Each ratio requires re-calculation
as these two parameters vary. Comparison with previous
theory indicates that the theoretically derived values

for hb/Ho offer significantly improved approximations to
the assembled experimental data. The increased accuracy

is partially attributed to the use of a higher order
solution to the long wave equations. First order solutions
obtained indicate that the solution technique applied
offers improvement over previous theory. The predicted
breaking depths are somewhat less than those observed in
field measurements. It is believed that the extension of
the theory to higher order solutions of the long wave
equations would reduce the error associated with the pre-
dicted breaking depth. Inclusion of vertical water particle

accelerations would also increase the accuracy of the solution.
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APPENDIX A

DERIVATION OF 7 (2)

Iwagaki and Sakai have obtained a second order solution
for the free surface, 7z(x,t) . The relation derived com-
pared favorably with experimental data. Several approxi-
mations made in the solution, however, warrant discussion.

Combining equations (18) and (19) so that u(2) is

eliminated, gives
@ @ - (2) . ] s
Tt ¢ g[7xx“<+7x(
0 +[ O] 0,07,
[u 7 ])(t w ux]xtx -1-[u- ux]L " (A-1)
Iwagaki and Sakai substituted their first order equations
(20) and (21) into the right side of (A-]). They then

offered approximations for the Bessel and Neumann (Weber)

functions of

J,(w)~ (24e) Zcos(w-vm/a-™/a) (A-2)

and

Ny ()~ (%W)st‘“ (w=rt/a- /e Js (a-3)

The authors provide evidence which shows that for lwl 21.0,

these asymptotic expansions are accurate. Defining




e e e o

y(x) = (2 o'(x/gi)%- 7/4), use of (A-2) and (A-3) allows

the right side of (A-1) to be expressed as

5 2«t§ 30.0' y % ioel 2 (X‘ﬂ
¢ Bty x-stEa 5
+ '1)_33:' (3¢ i Tl S [2 f(x)zg

2 Sy -
P :__V_Oa; (%L) LX 5/1 <_‘os[:z ?(x)j A (A-4)

The solution of 7‘((2) was assumed: ta be
72(2'36('@ ::A(xx cos2at+ B(x) sinCat+ C (x)
This expression was substituted into the left side of
equation (A-1l) and the result compared to (A-4). From this

comparison, the coefficients A(x), B(x) and C(x) are deter-

mined as
z
A(x)= =37 x"smgz (O]
- o} T g
TSW(_&(_)lX e 5[2 ?(xﬂ) (A-5)
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T cos [Z. (xﬂ

X

.1_735. 7::_1:‘- ( : /sz/?« SIN [Zf(xﬁ] (A-6)
a* (
7(

= e cos| L (x)
s.N@q@g / (a-7)

Use of (A-5), (A-6) and (A-7) gives the left side of (A-1)

A

as

cos 2at { 6 <8 S/l Wi cos {ZQ(Q:{
+ 5’/Z & /TT X SINEZ (x}]
+ 2740 a 3 (4 Y= % /zCo{z(y(xﬂ

+ SIN Zcrtg 3—9‘,7( x—3/z sl 2 (xi]
+ Sl a g /mi? COSSEZ 9]
—27/40 __j_(%d “ /’*S/N[?_Cf(xﬂg

e[ <//2 ‘3/%65[& ]

‘3/2. 8»//}/ x SIN[Z (x)
/__a_ (31)’/1 (R enn] 2 50?0%13 1

+/4 _3_‘_‘2 (K Psin)2 AHx)]11. (A-8)
Examination of (A-4) and (A-8) shows that use of the
expressions for the coefficients A(x), B(x) and C(x) does
not yield an exact solution. Differences occur in the
third term constants in each of the coefficients of
cos 2d t and sin 2g t, In addition, the segment of (A-8)

indeperdent of t contains a fourth term not present in (A-4).




Instinctively, these differences would seem to limit
the accuracy of the solution. Iwagaki and Sakai substan-
tiated their solution, however, by considering the relative
significance of the terms. It was noted that the terms of
the coefficients of sin 2Jt and cos 2¢ t involved the

3/2 -2 5/2

values x °/°, x™% and x °/“, while the fourth term inde-

pendent of t in (36) contained x3,

Using ¢ = 27 /T and
comparing the second, third and fourth terms to the first,

the following ratios were found,

2nd Term/lst Term ~ | {(%Téﬂ’> /(3 s § ‘]i
3rd Term/lst Term ~~ E i (QT/Z‘R)/(B HBYZ% Lt[)l

and

4th Term/lst Term ~~ Ei (BT/ZTY )/(3\1)'/% JB

The interpretation of these ratios is that the successively
higher termns become relatively smaller in proportion to 1i.
Iwagaki and Sakai considered the specific case of i = %3 "
h =20 cmand T = 3 sec. Examination of the first and third
terms show that they are in phase. For these particular
conditions, the ratio between the third and first terms is

less than % . The conclusion is that the difference

between the constants for the third terms is negligible.
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Similarly, the fourth term is compared to the second,
which is in phase with it, and seen to be negligible. The
use of (A-5), (A-6) and (A-7) can therefore be used to

(2)

provide an accurate expression for 7'( as

(a)(x tx‘ coslcrt % 31—: X SIN[Z (xﬂ
..3 ———( \)/"* T, [Z?(Xﬂg

+ SIN Zo’f% e ‘*L. X C°3EZ@(X)J
+¥o e (3/ )’LX S/Z'SINEZ. CS?(,(Y%
[l/q,__‘ <%/ 5’/7— —3z (o$i2cy<ﬁ>:(

T, <*em g O] . (49

The final solution for 7( )(x,t) offered by Iwagaki

and Sakai was
2% )= _T%_ f [d'(’-&-Z:r( Y»-W/]

o vt (% BO5ER
e @Yex /Zcos§2E2f(3>"”“ val§

_Z _— IN Z /Lﬂ- "
s w2 en PR ST [L wo
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APPENDIX B

COMPUTER PROGRAMS

The results which are summarized in Table 1 were calcu-
lated through the use of a series of simple computer pro-
grams. They are essentially a series of do-loops designed
to perform a number of iterations over an interval. The
results are examined to determine the desired solutions.

The first two programs used are concerned with estab-
lishing a value for the quantity, a, found in equations
(56), (57) and (63). As was discussed in Section V.E.,
this evaluation can be made through the use of (67), (69),
(71), (72) and (70). The first step in the process is to

employ (72),

to find Hl/hl‘ In this expression, hl/Lo is known for the
particular case under consideration. Equation (62) gives
this term as hllLo = 0.0157 for the limiting condition of
h/L £ 1/20, Entry into the wave energy flux curves of
hyperbolic wave theory with the value of hl/Lo = 0,0157
gives a value of Hl/Ho = 1.28. The remaining quantity in

the right side of (72), HO/LO, is a known value for the
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specific wave conditions. It can be determined from deep
water observations of the wave. Therefore, once this
value is specified for a certain set of wave conditions,
(72) yields a value of Hl/hl. For instance, when HO/Lo
is equal to 0.001, Hl/hl = (1.28)(.001)/.0157 = 0.0815.
Equation (69) provides a relation for the quantity b

2
as b = Ag )/Agl). Use of (67), which defines A§2) and

A( 1)

1 allows this equation to be evaluated as

i

b ,’T—‘/“ Z"/L' ¢ i <}7L/Lo\)§/+a~/h_1_ - (B-1)

2
Since %l = 0.0157 and L =8

B-1) is equivalent to
< 21y() q

L TY3/4-2_5/4 :’/z_ (H,/ng/‘} ﬁmf-b' (8-2)

The next value which must be determined is that of f(C?;)
in (70) which is defined in (69) as
f(e)=cos O —bsin2C,

Use of the identity

Than &
o=
S | + Tan™ &
reduces (69) to
- — Zbtan®
£(G)= cos Oe e é@ . (B-3)
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Equation (71) gives Oc as

© —RKQSIN{(qb ILbL /2'\/13

Defining x as,

o e 165L+Z> /L)/Z- ; (B-4)

and using the identities which exist when o = arc sin x of

Cos o = ,i|._xL
and
PO (B-5)
o

results in (B-3) being given by

C(ec'):\[ =% — 25 \YB%;-L

|+ (_—:T_;L\L : ‘ (B-6)

1)
A](- is determined from (67) as

O Wi V) b/ N 5
A' Pt < /L'o} <°'°‘$7)°6TL (B-7)

Equations (B-6) and (B-7) can now be combined to express
Hl/h]_ in terms of the quantity a. The requirement then is
that of determining the value of a for which the right side
of (70) equals the value of Hl/hl as given by (72).

The first computer program used defines a function F

ts the difference of the right hand value of (70), obtained
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through (B-6) and (B-7), and the left side evaluated by
(72). The program is designed to plot F as a function of
a. The value of a for which F equals zero is the required
solution of (70). Examination of the graph produced by
the first program can thus give a first approximation to
the quantity a.

The second computer program employed is simply an
iteration routine used to refine the value of a. It begins
with a first estimate of a determined from the graph of F
versus a. The value of a is then incremented in steps of
0.001 and the corresponding values of F calculated. The
program is designed to determine the value of F closest to
zero and to print the value of a for this case. This is
the value of a which satisfied (70).

The next series of programs are designed to determine
the maximum value of x at which the kinematic breaking
criterion is satisfied and the time at which this occurs.
This can be accomplished by finding a solution set of (x,t)
combinations for which the difference between the right sides
of equations (63) and (57) is equal to zero. The technique
used is similar to that used in establishing the value of
a. The presence ci two dependent variables, however,

makes the procedure somewhat more complex.
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The first program in this determination utilizes the
method employed for the plot of F as a function of a. A
function is defined which equals the difference between

(63) and (57), (c-u). This is plotted as a function of x

for a series of times t. Examination of the graphs provides

a first guess at the maximum x for which the kinematic
breaking condition is satisfied and the time at which it
occurs. As was the case for determining a, a second pro-
gram is now utilized to obtain a more refined solution.
Here, time is varied over one second in steps of 0.05
seconds and x is incremented in intervals of 0.01 feet.
The value of the function defined as (c-u) is printed for
these specific (x,t) combinations. These results are
examined to determine the point at which the kinematic
criterion is first satisfied.

These first programs have thus determined the maximum
x at which the kinematic breaking criterion is satisfied
and the time at which it occurs. The remaining programs
utilize this result to produce the breaking criteria
summarized in Table 1. The fifth program in the complete
series simply calculates the value of “l (the free surface)
and the depth of the bottom for the point specified for
the solution of (x,,t). This is accomplished by using

(56) to define 77 and h = i‘xb. The ratios of 7]b/hb and
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and hb/Lo are then calculated. A similar program is also
provided which graphs 71 as a function of x.

Pages 8€-91 contain flow charts for the programs

employed in these determinations.
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